Project Name: Preliminary Assessment and Survey of Land Degradation in the Dalrypmle Shire, QLD

Project Code: DLR Site ID: 414 Observation ID: 1

Agency Name: QLD Department of Primary Industries

Site Information

Desc. By: M. DeCorte Locality:

Date Desc.: Elevation: 05/09/91 220 metres Map Ref.: Sheet No.: 8157 GPS Rainfall: No Data Northing/Long.: 7775126 AMG zone: 55 Runoff: Moderately rapid 439342 Datum: AGD66 Well drained Easting/Lat.: Drainage:

Geology

ExposureType: No Data Conf. Sub. is Parent. Mat.: No Data Geol. Ref.: No Data Substrate Material: No Data

Land Form

Rel/Slope Class: Gently undulating plains <9m 1- Pattern Type: Alluvial plain

3%

Morph. Type:RidgeRelief:No DataElem. Type:LeveeSlope Category:No DataSlope:%Aspect:No Data

Surface Soil Condition (dry): Hardsetting

Erosion:

Soil Classification

Australian Soil Classification:Mapping Unit:N/AHaplic Hypocalcic Brown Dermosol Thin Non-gravelly SandyPrincipal Profile Form:Gn3.23

Clay-loamy Very deep

ASC Confidence: Great Soil Group: No suitable

All necessary analytical data are available.

Site Disturbance: Complete clearing. Pasture, native or improved, cultivated at some stage

Vegetation: Low Strata - Tussock grass, 0.51-1m, Mid-dense. *Species includes - Bothriochloa pertusa, Bothriochloa

ewartiana

Mid Strata - , , . *Species includes - None recorded Tall Strata - , , . *Species includes - None Recorded

Surface Coarse Fragments: No surface coarse fragments

Profile Morphology

0 - 0.08 m Dark brown (10YR3/3-Moist); ; Loamy fine sand; Weak grade of structure, 10-20 mm, Subangular blocky; Smooth-ped fabric; Dry; Firm consistence; , Calcareous, , ; , Gypseous, , ; Field pH 6.5 (Raupach, 0.05); Diffuse change to -Dark brown (10YR3/3-Moist); ; Fine sandy loam; Weak grade of structure, 20-50 mm, АЗ 0.08 - 0.35 m Subangular blocky; Smooth-ped fabric; Dry; Firm consistence; , Calcareous, , ; , Gypseous, , ; Diffuse change to -B21 Brown (7.5YR4/3-Moist); Fine sandy clay loam; Moderate grade of structure, 20-50 mm, 0.35 - 1.15 m Subangular blocky; Smooth-ped fabric; Dry; Strong consistence; Few cutans, <10% of ped faces or walls coated, prominent; , Calcareous, , ; , Gypseous, , ; Field pH 7 (Raupach, 0.4); Diffuse change to -B22 1.15 - 1.6 m Brown (7.5YR4/4-Moist); ; Sandy clay loam; Moderate grade of structure, 10-20 mm, Subangular blocky; Smooth-ped fabric; Dry; Very firm consistence; Very few (0 - 2 %),

Calcareous, Medium (2 -6 mm), Soft segregations; , Gypseous, , ; Field pH 9 (Raupach, 1.2);

B23 1.6 - 2 m Brown (7.5YR4/4-Moist); ; Sandy loam; Weak grade of structure, 20-50 mm, Subangular blocky;

Smooth-ped fabric; Dry; Very firm consistence; , Calcareous, , ; , Gypseous, , ; Field pH 9

(Raupach, 2);

Morphological Notes

Observation Notes

Site Notes

Preliminary Assessment and Survey of Land Degradation in the Dalrypmle Shire, QLD DLR Site ID: 414 Observation ID: 1

Project Name: Project Code: Agency Name: DLR Site ID: 414
QLD Department of Primary Industries

Laboratory Test Results:

and the state of t										
Depth	pН	1:5 EC		nangeable ⁄Ig	Cations K	Na	Exchangeable Acidity	CEC	ECEC	ESP
m		dS/m	Ca ii	ng	K	Cmol (+				%
0 - 0.08 0.35 - 1.15 1.15 - 1.6 1.6 - 2	6.8A 7.8A 8.2A 8.2A		8.1J	3.1	0.5	0.1		10.8I		0.93
Depth m	CaCO3	Organic C %	Avail. P mg/kg	Total P %	Total N %	Tota K %	I Bulk Density Mg/m3	Partic GV CS		Analysis Silt Clay
0 - 0.08 0.35 - 1.15 1.15 - 1.6 1.6 - 2										
Depth	COLE		Gravimetric/Volumetric Water Contents						(sat	K unsat
m		Sat.	0.05 Bar	0.1 Bar g/	0.5 Bar g - m3/m3	1 Bar 3	5 Bar 15	Bar n	nm/h	mm/h

0 - 0.08 0.35 - 1.15 1.15 - 1.6 1.6 - 2

Project Name: Preliminary Assessment and Survey of Land Degradation in the Dalrypmle Shire, QLD

Project Code: Site ID: 414 Observation ID: 1

Agency Name: **QLD Department of Primary Industries**

Laboratory Analyses Completed for this profile

15F1_CA

Exchangeable bases by 0.01M silver-thiourea (AgTU)+, no pretreatment for soluble salts Exchangeable bases by 0.01m (AgTU)+, no pretreatment for soluble salts 15F1_K 15F1_MG Exchangeable bases by 0.01m (AgTU)+, no pretreatment for soluble salts Exchangeable bases by 0.01m (AgTU)+, no pretreatment for soluble salts CEC by 0.01M silver-thiourea (AgTU)+ 15F1_NA

15F3 15N1 Exchangeable sodium percentage (ESP)

4A1 pH of 1:5 soil/water suspension